New Monoterpenoids from Fruits of Gardenia jasminoides var. radicans

by Shao-Fu Yu, Xiao-Jun Huang, Shu-Na Fu, Chun Wu, Wen-Cai Ye, and Guang-Xiong Zhou*

Institute of Traditional Chinese Medicine and Natural Products, College of Pharmacy, Jinan University, 601 West Huangpu Avenue, Guangzhou 510632, P. R. China (phone: +86-20-85221469; fax: +86-20-85221559; e-mail: guangxzh@sina.com)

One new lactone, cyclopentanepyrone A (1), and two new monoterpenoids, gardeterpenone A (2) and jasminoside V (3), were isolated from the fruits of *Gardenia jasminoides* var. *radicans*, along with four known monoterpenoids, 4-7, which were isolated from this plant for the first time. The structures of the isolates were elucidated by extensive spectroscopic studies, including UV, IR, 1D- and 2D-NMR, ESI-MS, HR-ESI-MS, and CD experiments.

Introduction. – Gardenia jasminoides var. radicans, as a variant of G. jasminoides J.ELLIS [1], is mainly distributed in some southern provinces of China. At present, there are only a few reports on its chemical constituents [2-6]. Our previous investigations of this plant revealed the presence of 13 iridoids, five flavonoids, four crocins, one monoterpene, five triterpenes, flavonoid glycosides, and five other compounds [4-7]. Our present investigation led to the discovery of three new monoterpenoid compounds, namely one new lactone, cyclopentanepyrone A (1), one new monoterpene, gardeterpenone A (2), and one monoterpenoid glycoside, jasminoside V (3), from the fruits of this plant, as well as four known monoterpenoids, rehmapicrogenin (4), 6'-O-sinapoyljasminoside A (5), jasminoside B (6), and jasminoside M (7), which are also reported from this plant for the first time (*Fig. 1*).

Results and Discussion. – Compound **1** was obtained as brownish oil. Its HR-ESI-MS exhibited a protonated molecular ion at m/z 183.1018 ($[M + H]^+$), in agreement with the molecular formula $C_{10}H_{14}O_3$. The UV absorption maximum at 217 nm, and IR absorption bands at 3420, 1760, 1683, and 1025 cm⁻¹ suggested that **1** contains a OH and an α,β -unsaturated lactone group. The NMR data (*Table 1*) of **1** showed a C=C bond between C(4) (δ (H) 6.64 (t, J = 3.0), δ (C) 136.8) and C(5) (δ (C) 131.3); one COO signal at δ (C) 172.3 (C(3)); two Me signals at δ (H) 0.88 (s, Me(10))/ δ (C) 20.0 (C(10)) and δ (H) 1.07 (s, Me(11))/ δ (C) 29.8 (C(11)); two CH₂ signals at δ (H) 4.07 – 3.96 (m, H_a-C(1)), 4.52 (t, J = 9.0, H_b-C(1))/ δ (C) 69.8 (C(1)) and δ (H) 1.46 (dd, J = 12.9, 10.2, H_a-C(7)), 1.88 (dd, J = 13.0, 6.2, H_b-C(7))/ δ (C) 47.5 (C(7)); one CH signal at δ (H) 3.02 (tt, J = 9.5, 3.8, H–C(9))/ δ (C) 47.6 (C(9)), one CH–O signal at δ (H) 4.46–4.35 (m, H–C(6))/ δ (C) 67.3 (C(6)), and one saturated C_q-atom signal at δ (C) 36.2 (C(8)).

In addition, the presence of a δ -lactone unit was supported by the COO signal at δ (C) 172.3 (C(3)). The HMB correlations of H–C(4) with C(3), C(5), C(6), and C(9), as well as the COSY correlations H–C(6)/CH₂(7) and H–C(9)/CH₂(1) suggested the presence of a –O–CH₂–CH–C(=CH–C(O)–)–CH(OH)–CH₂– moiety (*Fig.* 2). The

^{© 2015} Verlag Helvetica Chimica Acta AG, Zürich

Fig. 1. Structures of 1-7

Table 1. ¹H- and ¹³C-NMR Data (300 and 75 MHz, resp.; in CD₃OD) of **1** and **2**. δ in ppm, J in Hz.

Position	1		2		
	$\delta(H)$	$\delta(C)$	$\delta(\mathrm{H})$	$\delta(C)$	
1	$4.07 - 3.96 (m, H_a)^a),$ $4.52 (t, J = 9.0, H_b)$	69.8		202.1	
2				159.0	
3		172.3		150.3	
4	6.64 (t, J = 3.0)	136.8		40.0	
5		131.3	2.35(s)	53.1	
6	$4.46 - 4.35 (m)^{a}$	67.3	6.18 (s)	123.8	
7	1.46 $(dd, J = 12.9, 10.2, H_a),$ 1.88 $(dd, J = 12.9, 6.2, H_b)$	47.5	4.41 $(d, J = 1.5)$	62.0	
8		36.2	5.42 (s, H_a), 5.39 (d, $J = 1.5$, H_b)	114.1	
9	3.02 (tt, J = 9.5, 3.8)	47.6	1.17 (s)	28.6	
10	0.88(s)	20.0	1.17(s)	28.6	
11	1.07(s)	29.8			

Me(10) and Me(11) groups correlated with C(8), C(7), and C(9) in the HMBC spectrum, indicating that the two Me groups were connected to the saturated C_q -atom C(8). Furthermore, a HMB correlation of H_b -C(1) with C(3) was observed. Taking into account the four degrees of unsaturation, the planar structure of **1** was deduced.

Fig. 2. Key HMBC $(H \rightarrow C)$ and COSY (-) correlations of 1-3

The ¹H- and ¹³C-NMR signals (*Table 1*) of **1** were completely assigned with the aid of the ¹H,¹H-COSY, HSQC, HMBC, and NOESY spectra.

Additionally, the NOE correlation between H–C(6) and H–C(9) suggested that these H-atoms are on the same side of the molecule plane, leading to either (6R,9S)- or (6S,9R)-configuration. The absolute configuration of **1** was elucidated by a quantumchemical circular dichroism (CD) calculation. The CD computation for **1** was performed at the B3LYP/6–31G(d) level. The overall predicted CD curve was compared with the experimental one, which implied a good agreement between the calculated CD curve and the measured one (*Fig. 3*). Therefore, **1** was identified as (5R,7aS)-5,6,7,7a-tetrahydro-5-hydroxy-7,7-dimethylcyclopenta[c]pyran-3(1H)-one and named cyclopentanepyrone A.

Compound **2** was obtained as brownish jelly. The molecular formula, $C_{10}H_{14}O_2$, was determined from its HR-ESI-MS, which showed a *quasi*-molecular-ion peak at m/z 167.1064 ($[M + H]^+$). The UV maximum absorptions at 204 and 271 nm, and IR absorptions bands at 3414, 1660, 1032, and 913 cm⁻¹ indicated that **2** contains OH and C=O groups, and a conjugated diene unit. This was further supported by ¹H-and ¹³C-NMR spectra (*Table 1*). The 1D- and 2D-NMR data of **2** showed two C=C

Fig. 3. CD Spectrum of 1 and its computed CD curve

bonds between C(8) (δ (H) 5.42 (s, H_a), 5.39 (d, J = 1.5, H_b)/ δ (C) 114.1) and C(3) (δ (C) 150.3) as well as C(6) (δ (H) 6.18 (s)/ δ (C) 123.8) and C(2) (δ (C) 159.0), one C=O signal at $\delta(C)$ 202.1 (C(1)), two Me signals at $\delta(H)$ 1.17 (s, Me(9,10))/ $\delta(C)$ 28.6 (C(9,10)), one CH₂ signal at $\delta(H)$ 2.35 (s, H–C(5))/ $\delta(C)$ 53.1 (C(5)); one CH₂O signal at $\delta(H)$ 4.41 (d, J = 1.5, H-C(7))/ $\delta(C)$ 62.0 (C(7)), and one saturated C_q-atom signal at $\delta(C) 40.0 (C(4)).$

In the HMBC spectrum (Fig. 2), the correlations of Me(9) and Me(10) with C(4), C(5), and C(3), suggested that the two Me groups were connected to C(4). The longrange correlations of H_a -C(8), H_b -C(8), and H-C(6) with C(3) and C(2) indicated a conjugated diene unit. Meanwhile, the correlations of $CH_2(7)$ with C(2) and C(6)determined the linkage of the CH₂O group to C(6). Besides, the HMB correlations of H–C(6) with C(1) and of CH₂(5) with C(1) indicated that the C=O group (C(1)) was located between C(5) and C(2). Therefore, 2 was identified as (2E)-2-(2-hydroxyethylidene)-4,4-dimethyl-3-methylidenecyclopentanone, and named gardeterpenone Α.

Compound 3 was obtained as white jelly. The molecular formula, $C_{21}H_{32}O_{11}$, was deduced from the *pseudo*-molecular-ion peak at m/z 483.1036 ($[M + Na]^+$) in the positive-ion-mode HR-ESI-MS. The UV maximum peaks at 204 and 277 nm, and the IR absorption bands at 3404, 1713, and 1061 cm⁻¹ revealed that **3** contains OH groups, an ester C=O group, and a conjugated diene unit. According to the anomeric H-atom signal at $\delta(H)$ 5.60 (d, J = 7.9, H–C(1')) and the C-atom signals at $\delta(C)$ 95.8 (C(1')), 74.0 (C(2')), 78.2 (C(3')), 71.1 (C(4')), 78.1 (C(5')), and 69.6 (C(6')) (Table 2), the presence of a β -D-glucopyranosyl moiety was indicated. Meanwhile, a β -D-xylopyranosyl unit was deduced based on the anomeric H-atom signal at $\delta(H)$ 4.35 (d, J=7.4, H–C(1")) and the C-atom signals at $\delta(C)$ 105.3 (C(1")), 75.0 (C(2")), 77.7 (C(3")), 71.2 (C(4")), and 66.9 (C(5")) [8]. Acid hydrolysis and derivatization of 3 followed by HPLC analysis of the derivatives, determined β -D-glucose and β -D-xylose as monosaccharide residues in the molecule [9]. Except for the signals of two sugar residues, the ¹³C-NMR and DEPT spectra of **3** exhibited ten C-atom signals, including

Position	$\delta(\mathrm{H})$	$\delta(C)$	Position	$\delta(\mathrm{H})$	$\delta(C)$
1		34.6	3'	3.47 (d, J = 2.7)	78.2
2	$2.08 - 2.22 (m)^{a}$	40.7	4′	3.50(s)	71.1
3	5.97 (dt, J = 9.6, 4.0)	130.4	5'	3.60 (dd, J = 8.2, 4.9)	78.1
4	5.90 (dt, J = 9.6, 1.5)	129.2	6'	4.11 (dd, J = 11.6, 1.7),	69.6
5		134.9		$3.80 - 3.75 (m)^{a}$	
6		133.8	1″	4.35(d, J = 7.4)	105.3
7	1.86(s)	20.2	2''	3.23 (dd, J = 5.3, 3.5)	75.0
8	1.16 (s)	26.6	3″	3.33 (dd, J = 3.1, 1.7)	77.7
9	1.15 (s)	26.3	4''	$3.40 - 3.35 (m)^{a}$	71.2
10		170.1	5″	3.87 (dd, J = 11.4, 5.2),	66.9
1′	5.60 (d, J = 7.9)	95.8		3.17(d, J = 11.4)	
2′	3.44(s)	74.0			

Table 2. ¹H- and ¹³C-NMR Data (300 and 75 MHz, resp.; in CD₃OD) of **3**. δ in ppm, J in Hz.

) Signal multiplicity pattern is unclear due to overlapping.

an ester C=O group (δ (C) 170.1 C(10)), two olefinic C_q-atoms (134.9 (C(5)) and 133.8 (C(6))), two olefinic CH groups (δ (H) 5.97 (dt, J = 9.6, 4.0, H–C(3))/ δ (C) 130.4 (C(3)) and δ (H) 5.90 (dt, J = 9.6, 1.5, H–C(4))/ δ (C) 129.2 (C(4))), a CH₂ group (δ (H) 2.08–2.22 (m, CH₂(2))/ δ (C) 40.7 (C(2))), a saturated C_q-atom (δ (C) 34.6 (C(1))), together with three Me groups (δ (H) 1.86 (s, Me(7))/ δ (C) 20.2 (C(7)), δ (H) 1.66 (s, Me(8))/ δ (C) 26.6 (C(8)), and δ (H) 1.65 (s, Me(9))/ δ (C) 26.3 (C(9))). Complete and combinational analysis of ¹³C-NMR, HSQC, and HMBC spectra allowed deducing the constitution of the aglycone moiety as a monoterpene (*Fig. 1*).

The HMB correlation of the H-atom at $\delta(H) 5.60 (H-C(1'))$ with the C=O C-atom at $\delta(C) 170.1 (C(10))$ suggested that the glucopyranosyl moiety is attached to the C=O C-atom of the aglycone residue. Besides, the two sugar moieties formed a β -D-Xyl- $(1'' \rightarrow 6')$ - β -D-Glc connection on the basis of the correlation of the H-atom at $\delta(H) 4.35 (H-C(1''))$ with the C-atom at $\delta(C) 69.6 (C(6'))$ in the HMBC spectrum. Therefore, **3** was identified as 1-O-[(2,6,6-trimethylcyclohexa-1,3-dien-1-yl)carbonyl]-6-O- β -D-xylopyranosyl- β -D-glucopyranose. It is the disaccharide of a monoterpene, named jasminoside V.

In addition, the known compounds were identified as rehmapicrogenin (4) [10], 6'-O-sinapoyljasminoside A (5) [11], jasminoside B (6) [11], and jasminoside M (7) [8] (*Fig. 1*) by comparing their spectroscopic data with reference values.

This work was financially supported by the *Chinese National S & T Special Project on Major New Drug Innovation* (2011ZX09307-002-01).

Experimental Part

General. Standard sugars, β -D-glucose and α -L-rhamnose, and reagent L-cysteine methyl ester were purchased from Adamas-beta Company (Basel, Switzerland). o-Tolyl isothiocyanate was purchased from Sigma Company (Santa Clara, CA, USA). All reagents were purchased from Tianjin Damao Chemical Company (Tianjin, P. R. China). Thin-layer chromatography (TLC): precoated aluminum silica gel HSAF254 plates (SiO₂; 1 mm; Yantan, P. R. China); spraying reagent, 10% H₂SO₄/EtOH. Column chromatography (CC): SiO₂ (300-400 mesh; Qingdao Haiyang Chemical Group Corporation; Qingdao, P. R. China), ODS (50 µm; YMC, Tokyo, Japan), and Sephadex LH-20 (GE Healthcare, Sweden). Anal. and semi-prep. reversed-phase HPLC: Agilent 1200 (Agilent Technologies, Santa Clara, CA, USA) with an XB-C18 column (4.6 × 250 mm, 5 µm; Welch Materials Inc.) for analysis and an Ultimate® XB-C18 column (21.2 × 250 mm, 5 µm; Welch Materials Inc.) for purification. Optical rotations: JASCO P-1020 automatic digital polarimeter (JASCO International Co., Ltd., Tokyo, Japan). UV Spectra: JASCO V-550 UV/VIS spectrometer (JASCO International Co., Ltd., Tokyo, Japan); λ_{max} (log ε) in nm. CD Spectra: Chirascan spectropolarimeter (Applied Photophysics Ltd., U.K.); at r.t. IR Spectra: JASCO FT/IR-480 plus FT-IR spectrometer (JASCO International Co., Ltd., Tokyo, Japan); v in cm⁻¹. ¹H- and ¹³C-NMR spectra: Bruker Avance III 300 MHz spectrometer (300 and 75 MHz, resp.; Bruker Biospin, Fällanden, Switzerland); in CD₃OD; δ in ppm rel. to Me₄Si as internal standard, J in Hz. ESI-MS: LCQ Advantage Max mass spectrometer (Thermo Finnigan, San Diego, CA, USA); in m/z. HR-ESI-MS: Agilent 6210 LC/MSD TOF mass spectrometer (Agilent Technologies, Santa Clara, CA, USA); in m/z.

Plant Material. Dried ripe fruits of *G. jasminoides* var. *radicans* were collected from Bozhou Market for Chinese Materia Medica, Anhui Province, P. R. China, in October 2011 and authenticated by *G.-X. Zhou* at the College of Pharmacy, Jinan University. A voucher specimen was deposited with the herbal museum of the college, Guangzhou, P. R. China.

Extraction and Isolation. The dried ripe fruits (7.0 kg) of *G. jasminoides* var. *radicans* were ground into powder, and the powder was heated under reflux with 70% EtOH (3×15 l, 3 h each). The extract was concentrated *in vacuo* to yield a dark-brown residue (800 g), which was suspended in 3.0 l of H₂O,

and then partitioned with petroleum ether (PE), AcOEt, and BuOH $(3 \times 3.01, 3 \text{ h} \text{ each})$, successively. The AcOEt extract (80 g) was subjected to CC (SiO₂; CHCl₃/MeOH 100:0 to 0:100) to give nine fractions, *Frs.* 1-9, which were merged according to their TLC pattern. *Fr.* 3 (7.2 g) was subjected to CC (SiO₂; PE/acetone 50:1,25:1,20:1,10:1,5:1,3:1,1:1, and 0:1) to furnish **4** (23.1 mg) and ten fractions, *Frs.* 3.1-3.10. Furthermore, *Fr.* 3.5 (0.4 g) was separated by prep. HPLC (MeCN/H₂O 15:85) to afford **1** (7.2 mg) and **2** (6.8 mg). Compound **5** (11.2 mg) was purified from *Fr.* 3.3 (0.4 g) by CC (*Sephadex LH-20*; CHCl₃/MeOH 1:1, isocratic solvent system). Additionally, *Fr.* 6 (5.8 g) was subjected to CC (SiO₂; CHCl₃/MeOH 1000:1, 100:1, 50:1, 30:1, 20:1, 10:1, 8:2, 1:1, and 0:1) to give eight subfractions, *Frs.* 6.1-6.8. *Fr.* 6.2 (0.5 g) was separated by prep. HPLC (MeOH/H₂O 50:50) to yield **3** (7.9 mg). *Fr.* 6.4 (0.9 g) was further subjected to CC (*Sephadex LH-20*; CHCl₃/MeOH 1:1, isocratic solvent system) to yield **6** (4.2 mg) and **7** (18.7 mg).

Cyclopentanepyrone A (=(5R,7aS)-5,6,7,7a-Tetrahydro-5-hydroxy-7,7-dimethylcyclopenta[c]pyran-3(*I*H)-one; **1**). Brown oil. [α]_D²⁵ = -15.8 (c = 0.50, MeOH). UV (MeOH): 217 (4.03). IR (KBr): 3420, 2959, 1760, 1683, 1216, 1156, 1025, 751. ¹H- and ¹³C-NMR: see *Table 1*. ESI-MS: 183 ([M + H]⁺). HR-ESI-MS: 183.1018 ([M + H]⁺, C₁₀H₁₅O⁺₃; calc. 183.1016).

Gardeterpenone A (=(2E)-2-(2-*Hydroxyethylidene*)-4,4-*dimethyl*-3-*methylidenecyclopentanone*; **2**). Brown jelly. UV (MeOH): 204 (4.05), 271 (4.04). IR (KBr): 3414, 2966, 2937, 1660, 1286, 1105, 1032, 913, 762. ¹H- and ¹³C-NMR: see *Table 1*. ESI-MS: 167 ($[M + H]^+$). HR-ESI-MS: 167.1064 ($[M + H]^+$, $C_{10}H_{15}O_2^+$; calc. 167.1067).

Jasminoside V (=1-O-[(2,6,6-Trimethylcyclohexa-1,3-dien-1-yl)carbonyl]-6-O- β -D-xylopyranosyl- β -D-glucopyranose; **3**). White jelly. [α]_D⁵ = -16.2 (c = 0.50, MeOH). UV (MeOH): 204 (4.02), 277 (4.05). IR (KBr): 3404, 2959, 2921, 1713, 1648, 1458, 1377, 1061. ¹H- and ¹³C-NMR: see *Table 2*. ESI-MS: 483 ([M + Na]⁺). HR-ESI-MS: 483.1836 ([M + Na]⁺, C₂₁H₃₂NaO₁₁⁺; calc. 483.1837).

Acid Hydrolysis of **3** and Determination of the Absolute Configuration of Sugars. The absolute configurations of the two monosaccharide residues of **3** were identified by the method of Tanaka [9]. Compound **3** (1 mg) was hydrolyzed by heating in 2M HCl for 4 h at 70°. After drying *in vacuo*, the residue was dissolved in H₂O and extracted with AcOEt. Then, the aq. layer was collected. After drying under reduced pressure, the residue was dissolved in pyridine (1 ml) containing L-cysteine methyl ester hydrochloride (1 mg) and heated at 60° for 1 h. A soln. (0.1 ml) of *o*-tolylisothiocyanate (0.5 mg) in pyridine was added to the mixture, which was heated at 60° for 1 h. Then, the mixture was directly analyzed by reversed-phase HPLC (*XB-C18*) with isocratic elution of 25% MeCN containing 0.1% AcOH for 60 min; flow rate, 1 ml min⁻¹; UV detector (254 nm). The peaks at t_R 17.34 and 19.52 min coincided with the corresponding derivatives of β -D-glucose and β -D-xylose.

REFERENCES

- [1] X.-M. Fu, F. Ge, X.-W. Lai, X.-L. Zhu, C.-S. Fan, Chin. Wild Plant Res. 2002, 21, 23.
- [2] S.-J. Liu, X.-T. Zhang, W.-M. Wang, M.-J. Qin, L.-H. Zhang, Chin. Tradit. Herbal Drugs 2012, 43, 238.
- [3] L.-H. Zhang, S.-J. Liu, Z.-D. Zhao, W.-M. Wang, X.-T. Zhang, Strait Pharm. J. 2012, 24, 39.
- [4] F.-M. Qin, L.-J. Meng, H.-L. Zou, G.-X. Zhou, Chem. Pharm. Bull. 2013, 61, 1071.
- [5] F.-M. Qin, L.-J. Meng, H.-E. Yuan, Y. Zhang, G.-X. Zhou, Chin. Pharm. J. 2014, 49, 275.
- [6] F.-M. Qin, B.-L. Liu, Y. Zhang, G.-X. Zhou, Nat. Prod. Res. 2015, 29, 633.
- [7] S.-F. Yu, S.-N. Fu, B.-L. Liu, Y. Zhang, G.-X. Zhou, Nat. Prod. Res. 2015, 29, 1336.
- [8] Y. Yu, H. Gao, Y. Dai, Y. Wang, H.-R. Chen, X.-S. Yao, Helv. Chim. Acta 2010, 93, 763.
- [9] T. Tanaka, T. Nakashima, T. Ueda, K. Tomii, I. Kouno, Chem. Pharm. Bull. 2007, 55, 899.
- [10] Y. Meng, B.-Y. Peng, Z.-M. Bi, P. Li, J. Chin. Med. Mater. 2005, 28, 293.
- [11] Q. C. Chen, U. J. Youn, B.-S. Min, K. H. Bae, J. Nat. Prod. 2008, 71, 995.

Received January 22, 2015